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Abstract D-MORPH regression is a procedure for the treatment of a model pre-
scribed as a linear superposition of basis functions with /ess observation data than the
number of expansion parameters. In this case, there is an infinite number of solutions
exactly fitting the data. D-MORPH regression provides a practical systematic means to
search over the solutions seeking one with desired ancillary properties while preserv-
ing fitting accuracy. This paper extends D-MORPH regression to consider the common
case where there is more observation data than unknown parameters. This situation is
treated by utilizing a proper subset of the normal equation of least-squares regression
to judiciously reduce the number of linear algebraic equations to be less than the num-
ber of unknown parameters, thereby permitting application of D-MORPH regression.
As aresult, no restrictions are placed on model complexity, and the model with the best
prediction accuracy can be automatically and efficiently identified. Ignition data for a
Hpj/air combustion model as well as laboratory data for quantum-control-mechanism
identification are used to illustrate the method.
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1 Introduction

A mathematical model generally is an approximation to the structure of a complex
physical system, and the model is often determined from a set of observation data.
Consider the target variable y defined by a deterministic function f (x) with additive
Gaussian noise so that [1]

y=fx +e, (D
where x = (x1,x2,...,x,)] are the inputs, ¢ is Gaussian noise with expectation

E(e) = 0 and variance Var(e) = 052. A common special case is to approximate f(X)
as a linear combination of m basis functions ¢; (x)

OO~y w) =D wigi(x). )
i=1

Here w = (wq, w2, ..., wy)! are the parameters to be identified; ¢ (x) may be 1 if
a constant term w1¢1(X) = wj is included as an unknown parameter. The parameters
w are often determined from a set of observation data (x\/), y(j ) ( j=12,...,N)
utilizing the equations

where ¢ (xU)T = (¢ (x), po(xD), ..., ¢, (x)). In matrix form Eq. 3 becomes

ow =y, 4)
where
o1x1) g xD) ... B (xD)
$1(x?) p2(x@) ... P (x?P)
= . . . . (5)
d1xM) g (xM) L. (xNV)
and
y= 0G0, y@, Lyt (6)

Importantly, although the unknown coefficients w enter linearly in the model of Eq. 2,
the relationship x — y can be nonlinear through the basis functions ¢; (x).

Least-squares regression is commonly used to determine w by minimizing the error
E(w) expressed as the residual sum of squares (RSS),

E(w) =RSS = [|[®w —y|*. N
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The more complex the model (i.e., more basis functions, and consequently more
unknown w; parameters included in Eq.4), then the more flexibility available to fit
the data. However, the goal of modeling is often to make accurate predictions for
new as yet unobserved data, and good fitting does not necessarily mean good predic-
tion. Over-fitting may occur for complex models, which can result in unsatisfactory
predictions. Least-squares regression is a special case of maximum likelihood, and
over-fitting is a general problem in utilizing maximum likelihood [1]. For a given level
of model complexity, the over-fitting problem becomes more severe as the amount of
data decreases. One rough heuristic is that the number of data points should be no less
than some multiple (say 5 or 10) of the number of unknown parameters. This situa-
tion poses the unsatisfactory scenario of limiting the number of unknown parameters
in a model according to the size of the available data. A more desirable perspective
would entail choosing the complexity of the model according to the complexity of the
problem [1].

An appropriate level of model complexity may reasonably be determined by divid-
ing the available data into a training set, employed to determine the parameters w, and
a separate validation set, used to optimize the model complexity. In many cases, how-
ever, this procedure can be wasteful of the valuable data. As an alternative procedure,
a statistical test (e.g., F-test) may be used to identify the significant basis functions in
Eq.4 for a given set of data in order to compose a model with proper complexity [2].
However, the significant basis functions will generally depend on the chosen training
data. When the size of the training data set is small and not uniformly distributed, the
results can be misleading. The predictions based on such a procedure with different
distributions may vary and be unsatisfactory.

Another technique that is often utilized to manage over-fitting is regularization,
which involves adding a penalty term to E (w). For example, in ridge regression [3—8]
a regularization term is included in the minimization:

E(w) = |®w —y|* + [Tw]|? ®)

for some suitable Tikhonov matrix, I". In many cases, I" is chosen as proportional to
the identity matrix I' = A!/2I with parameter A > 0 giving preference to solutions w
with smaller norms:

E(w) = [|®w — y|* + 1w )

Smoothing splines [9-11] introduce a second term to penalize the square curvature
norm of the model function. These methods generally pose a trade-off with the fol-
lowing shortcomings: (1) in order to improve prediction accuracy, the fitting accuracy
often has to be sacrificed to some degree, (2) determination of the optimal value for the
parameter A (e.g., by the discrepancy principle, cross-validation, the L-curve method,
restricted maximum likelihood and unbiased predictive risk estimator validation) [12]
can require extensive computational effort. This paper will show that D-MORPH
regression does not impose restrictions on model complexity even when the number
of data points is close to or less than the number of unknown parameters. D-MORPH
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regression automatically and efficiently searches over the system complexity drawn
from a set of possible models.

The paper is organized as follows. Section 2 summarizes D-MORPH regression
methodology. Section 3 presents two illustrations of D-MORPH regression: (a) igni-
tion delay for a Hy/air combustion model and (b) laboratory data for quantum-con-
trol-mechanism identification [23,24]. Some concluding remarks are given in Sect. 4.

2 Methodology
2.1 D-MORPH regression

The principles of D-MORPH regression are briefly summarized here. Readers are
referred to [13] for further details and to [14—17] for background. When the number
m of unknown parameters (w;’s) is larger than the number of observation data points
N (i.e., m > N) with the provision that y lies in Ran(®) when ® does not have a full
row rank, Eq.4 is consistent and has an infinite number of solutions for w having the
general form

w=&y+ (I, — & ®u, (10)

where I, is the identity matrix of dimension m and u is an arbitrary vector in R"”, and
@~ is a generalized inverse of @ satisfying the condition

> & = d. a1
One choice for ®~ in Eq.10is @1, i.e.,
w=&"y+ 1, — & ®)u, (12)

where @ is the generalized inverse of @ satisfying all of the four Penrose conditions
[18]:

() *dTd = &, 2) 0T PP =T,
3)(@eHT = 00T, (4) (@TP)" = o1 . (13)
Equation 12 with u = 0 (i.e., ®*y) is the solution from traditional least-squares
regression with the smallest norm ||w]|.

All the solutions w of Eq.4 given by Eq. 12 compose a completely connected sub-
manifold M C R™. D-MORPH regression searches for a solution satisfying an extra
requirement by considering an exploration path w(s) within M with s € [0, 00),
which satisfies the differential equation

dw(s)

= Pv(s) = (I, — ®T®)v(s), (14)
ds
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where v(s) = du/ds and P is an orthogonal projector [18] satisfying
pP=p, P'=p P=pP=pP'P (15)

The function vector v(s) may be freely chosen to not only enable broad choices
for exploring w(s), but also provide the possibility of continuously reducing a defined
cost IC(w(s)) (e.g., the model variance, fitting smoothness, the weighted norm of w,
etc.) along the exploration path. If the free function vector is chosen as

RLECIO)

V(s) = ™ (16)
then we obtain
dK(w(s)) (aiC(w(s)))T dw(s) (aic(w(s)))T
= = Pv(s)
ds ow ds ow
T
_ (P 3/C(W(S))) (P 8’C(W(S))) <o, (17
ow ow

i.e., the cost K, used as an additional requirement, will be continuously reduced (sys-
tematically refining the model) over the exploration course for s > 0. Therefore,

Woo = lim w(s)
§—>00

is the solution with the minimum of . When the cost function is defined as a quadratic
form in w

K= EWTCW, (18)

where C is symmetric and non-negative definite, the analytical form of wy, may be
obtained as

Woo = Viur (U Vin—r) "' U, @7y, (19)

where Uy,_,, and V,,_, are the last m — r columns of U and V obtained by singular
value decomposition of PC [19,20]

S0 .7
PC—U[O 01|V (20)
with S, being a diagonal matrix of nonzero singular values.

Equation 19 is the key practical formula for the optimal solution w obtained by
D-MORPH regression. This solution W, is unique in M corresponding to the global
minimum of the cost function. As evident in Eq. 19, the solution ws, given by
D-MORPH regression is a special linear combination of the elements of w obtained
by the least-squares regression (i.e., ®1y).
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2.2 D-MORPH regression for fewer unknown parameters than observation data

Suppose we have a set of data and it can be satisfactorily fit by a model as a linear
combination of my(< N) basis functions ¢; X)(i = 1,2, ...,mg). Whenmy < N,
Eq.4 may not be consistent, but it can be solved by least-squares regression to yield
wo that minimizes the RSS given in Eq. 7. Setting

d(RSS)

w - <I>g(<l>owo -y=0 (21

gives the normal equation of least-squares regression
ol dgwo = ®y. (22)

Since both sides are pre-multiplied with @[, Eq.22 is consistent and always has a
solution wy.

We now expand the number of basis functions, the ¢; (x)’s, by adding in m| new
members (consequently including m | more coefficients w;’s). However, the total num-
ber m(= mq + m1) of basis functions (consequently unknown parameters) is still
smaller than the number of data N. The corresponding normal equation for the new
model with m basis functions is

! wo | [®F
[¢{}[¢0|¢‘][W1]_[¢{ y. (23)

The RSS given by the solution of Eq. 23 is smaller than the RSS given by the solution

of Eq.22 (i.e., Eq. 23 has better fitting accuracy) because Eq. 23 corresponds to a more

complex model with additional unknown parameters to flexibly fit the data.
Consider only the first m( equations in Eq. 23, i.e.,

o] (@] @] [gﬂ =®(y (24)

where <I>g [®o|®1]isan (mg x m) matrix and <I>g y is an mo-dimensional constant vec-
tor, i.e., Eq. 24 is composed of mo(< m) equations with m unknown variables which
has an infinite number of solutions w constituting a submanifold M C R™. At first
sight it may appear unusual to create a system of equations that is underdetermined,
but the added flexibility with m unknowns can be utilized to obtain a better solution
to the original problem by recognizing that Eq. 24 is just the form for application of
D-MORPH regression. The solution of Eq.22 belongs to M if we consider w; to be
zero. Similarly, the solution of Eq.23 also belongs to M because Eq.24 is a part of
Eq. 23 and the solution w of Eq. 23 must satisfy its partial equations, Eq.24. D-MORPH
regression is employed to find the solution w € M with the smallest value of the cost
function related to prediction accuracy, which implies that its prediction accuracy
is superior than the solutions of Eqgs.22 and 23. In this way, D-MORPH regression
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can be applied to modeling with fewer unknown parameters than observation data by
setting

® =] [®|D] (25)

and treating <I>gy asyin Eq.4.

The fitting accuracy of D-MORPH regression of Eq.24 is certainly not superior
to the solution of Eq.23, which has the best fitting accuracy compared to other solu-
tions in M when all ¢; (x)(i = 1, 2, ..., m) are used. However, since the solution of
Eq.24 obtained by D-MORPH regression possesses a minimum of the imposed cost
function (i.e., it has the best prediction accuracy for any data including the training
data), the fitting accuracy of D-MORPH regression for Eq. 24 will be close to that for
Eq.22. This behavior provides a criterion for choosing ®( (both the number m( and
the particular basis set in ®() based on its fitting accuracy by least-squares regression
being acceptable. This criterion for choosing the basis set in @ is not unique, and
other considerations may be included. These prospects are beyond the scope of the
present work.

3 Illustrations

Two examples will be used to illustrate the application of D-MORPH regression to the
common problem of modeling with fewer unknown parameters than observed data.
The first example concerns the generation of a reduced hydrogen-oxygen combustion
model using the input-output results from computational studies [21]. In this case
the resultant simplified model for the ignition delay time has three input variables
(x1, x2, x3), 63 unknown parameters and 100 available data points. The second exam-
ple utilizes laboratory data for quantum-control-mechanism identification [23,24].
The physical system is atomic rubidium vapor controlled by ultra-fast laser pulses and
the resultant model is generated to reveal the control mechanism. In this case there are
two input variables (x1, x2), 45 unknown parameters and 60 experimental data points.
The results in both examples will demonstrate the capability of D-MORPH regression
to successfully find excellent quality solutions.

3.1 Application to an ignition delay model of Hj/air combustion

An important characteristic of combustion is the ignition delay time f;, which depends
on several factors including the initial temperature, pressure and the equivalence ratio
of the fuel and oxygen. A homogeneous Hj/air combustion numerical simulation is
used with 8 species (Ha, O», H>O, H, O, OH, HO,, H;0,) and 19 reactions [21]
for testing the capability of D-MORPH regression. The initial temperature (1, 000 <
To < 1,500K), logarithmic value of pressure (0.1 < P < latm), and logarith-
mic value of Hy /O, equivalence ratio (0.1 < ¢ < 10.0) are chosen as three input
variables denoted respectively by x1, x2, x3, and the logarithmic value of the ignition
delay (defined as the time lapse f;; needed to attain an increase of 400K from the
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% . N . =
(6] w (4] n [¢)]

log t;4 with random noise
N

45 |

I
-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5

Model value of log t;g

Fig. 1 Comparison between the two data sets for log fig, with and without noise

initial temperature) is the output. Two hundred random data points of x were sam-
pled with a uniform distribution for 7p, log P and log¢ within the above ranges,
and the corresponding logarithmic values of ignition delay, logtje, were calculated
from the numerical simulation and defined as y(x). Gaussian white noise was added
to the resultant log iy values to simulate the laboratory circumstances. The signal to
noise ratio is Var(logtg)/Var(e) ~ 100. Comparison between the two data sets for
log #g, with and without noise, is given in Fig. 1.
All input variables are normalized as x; € [0, 1] and the polynomial expansion

36

Y = fo= > wigi(x)

i=1

3 3 3 3
=D D+ D DD Brappipg(xj)  (26)

i=1r=1 1<i<j<3 p=1g=1

was used as the approximate model. The lefthand side term y(x) — f is used as y(x, w)
in Eq.2 with fo = >V, y®/N; and

p1x) =3 2x — 1), 27)

r(x) = 643 (x2 - é) , 28)
_ 3 32,3 1

p3(x) = 20v/7 (x Sx g 20) (29)

are orthonormal polynomials for x € [0, 1]. In Eq. 26, polynomials p,(x;), and their
products p,(x;)py(x;) are the basis functions ¢;(x) in Eq.2. In Eq.26 the num-

ber mo of unknown parameters w; (i.e., coefficients ozi, ,Bgl]) is 36. The fitting
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accuracy of Eq.26 was found to be quite satisfactory, and thus Eq.26 was used to
construct ®¢. Then, additional new basis functions ¢; (x) (i.e., as third order products
Pp(xi) pg(x;) pr(xi)) were included so that the final model with m = 63 unknown
parameters,

63

3 3 3 3
YR = fo= D wigi®) =D D alp i)+ D DD By ppxi)pg(x))

i=1 i=1r=1 1<i<j<3 p=1g=1

3 3 3
+ > IS v e () pg () pr () (30)

I<i<j<k<3 p=lg=1r=1

was used to construct ®.
The cost function was chosen as the weighted norm of w

1 1 <
K=52 Ciwi =35> e}, (1)
i=1 i=1
which reduces C in Eq. 18 to a diagonal matrix with C;; = ¢;. The weights ¢; asso-

ciated with p, (x;), pp(xi)py(x;) and p,(x;)py(x;) pr(xx) were initially set to be r,
p + g and p 4 g + r, respectively, i.e., the weight is equal to the sum of the degrees
of the polynomials making up each basis function. Therefore, the ¢;’s take on values
between 1 and 9, and the higher degree polynomials have larger weights which makes
their contributions more likely to diminish faster under D-MORPH regression. As
the contribution of high degree polynomials in the model is repressed, the resultant
model is smoother and generally has better prediction accuracy. Figure 2 gives the
relationship between log tig and x; for the data. The relation has linear character for x;
and x7, but exhibits nonlinear behavior for x3. Thus, the weights c; for p1(x;), p2(x3),
p1(x;)p1(x;) and p1(x;) p1(x;)p1(xy) are set to zero, which removes the coefficients
for all linear polynomials and the quadratic function p;(x3) from consideration for
norm minimization. The remaining weights were set as described above as the sum of
the relevant polynomial degrees.

A statistical F'-test was also used to identify the significant component functions in
Eq. 30 to reduce the number of unknown parameters for least-squares regression. The
F-test for the first one hundred data yields the following model with 16 parameters:

16 3
YE) = fo =D wigi(x) = D i pi(xi) + 3 pa(x3)

i=1 i=1

2 2 3
+ > Bl PP (x3) + D D BE pp () pg xs)

g=1 p=1g=1
2 2
+ D Y pi(xn) g (x2) pr(x3). (32)
g=1r=1

@ Springer



1756 J Math Chem (2012) 50:1747-1764
1.5 1.5
3 : g [
S 2
c
£ 251, E -25]
) ° o ° o ° Q e °
o o, ° he] S8 o
T 33°%0 , o o 0Ty C 3Pfsce % o
S S ° o e, 8 oo o ° S 00 o o %o R
= ‘o °g °s o oo g 250 o & oo g 8%
3.5 g W Te oo °o ©° 58 % o ° | £ _35,“’0 0 @ o0 o0& %0 6o 00 %0, O ]
< e e o ® % ° = . M . °
= o 00 ® ®o% g9 0 D ° °0% go| S ° o o Se° o 0 %28, %% ° 8 o o
08 o o o ® = o o ®808 ° 000
o 4 o w ¢ S8, 0% oo, 1 o -4 o oy  §.° voo © 0]
- LI ) ° 0o° 8 c&% pd 0 fwe ?gccq’
D 45 °° 00 0 %o 8’_45 &S o o o
kS) ’ o © o0l = T © e
-5 -5
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X4 Xp
-1.5
3
© 2
c
g 251 .
S K o e
S 3| o o8 ° R oo
o o 8o % %oy
o B
£ asfest iRy, o eig w0
=R PR S I
% o s m" ® 0 o o e ® o
o -4l S o oo o o
= ° o o 0 ° o080 e 0 %
o I AR S T, C
o
S 45| S
o
-5
0 0.2 0.4 0.6 0.8 1
X3

Fig. 2 The relationship between logfj and x;. These plots are projections from three dimensions to each
respective single variable thereby producing the scattered character in each plot

Table 1 Comparison of the average absolute error as well as the relative error obtained by all the methods
for the training and testing data on the Hy/air combustion system

Method Equation Ave. abs. err. Ave. rel. err.
Training Testing Training Testing
Least-squares (26) 0.0367 0.0838 0.0107 0.0233
(30) 0.0187 0.1245 0.0051 0.0341
Least-squares with F-test 32) 0.0664 0.0975 0.0328 0.0380
Ridge (30) 0.0267 0.0831 0.0074 0.0231
D-MORPH (26)(30)* 0.0380 0.0691 0.0106 0.0192

*Eq. (26) for @, and Eq. (30) for ¢

Ridge regression in Eq.9 with A = 0.000771 (obtained by cross validation) was

additionally used with Eq. 30.

One hundred data points (i.e., the training data) were used to determine the param-
eters of the models. An additional 100 points were used to test the resultant models.
Note that the test set here is just used to assess the capability of the D-MORPH pro-
cedure and not to iteratively refine the model. A comparison of the average absolute
error as well as the relative error is given in Table 1 obtained from all these methods

for the training and testing data.
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The results in Table 1 show that for least-squares regression increasing the model
complexity from Eq.26 to Eq.30 yields a better fit to the training data, but over-fitting
occurs with Eq. 30. Thus, without testing, one cannot correctly select the best model
based only on fitting accuracy. For Eq. 32 obtained from the F-test, the fitting of the
training data has large errors. Although the prediction accuracy of Eq. 32 is better than
Eq. 30, it is not satisfactory and worse than Eq.26 by least-squares. This behavior
demonstrates that the identification of significant basis functions by the F-test from a
small set of data can be misleading. Ridge regression improves the prediction accuracy
without reducing the model complexity, but the computational effort involved is large
due to the need for determining the optimal value of A. D-MORPH regression has
the best prediction accuracy for the most complex model, Eq. 30. As expected, the fit-
ting accuracy of D-MORPH regression is very close to that obtained by least-squares
regression for the model used to construct ®(. The fitting accuracy may be used as
the main consideration for choosing @, and that was done here. Figure 3 gives truth
plot comparisons using Eq. 30 treated by least-squares, ridge and D-MORPH regres-
sion. In the combustion simulation example with D-MORPH regression, Eq.30 has
63 unknown parameters with only a slightly larger number of 100 data points.

3.2 Application to quantum-control-mechanism analysis

Quantum control seeks to manipulate dynamical events at the atomic and molecular
scale using tailored laser fields [26]. An automatic closed-loop procedure is often used
to find laser fields that maximize a signal reflecting the yield in a desired final state.
In this way quantum systems can be directed to perform a variety of tasks. In order
to gain an understanding of the mechanisms induced by the fields found by quantum
control, the technique of Hamiltonian encoding and observable decoding (HE-OD)
[23] has been implemented in the laboratory [23,24]. Over a sequence of experiments,
HE-OD introduces special encoded signatures into spectral components of the control
field, and the outcome appears as a modulated signal. Decoding the modulated signal
identifies the hierarchy of correlations between components of the control field. The
HE-OD procedure yields the complex amplitudes corresponding to terms in the Dyson
expansion for the time evolution operation [23]. An important issue when performing
HE-OD is to reduce the amount of data needed to extract the amplitudes, and this need
is consistent with the capability of the D-MORPH regression procedure as illustrated
here.

In this section we present an application of D-MORPH regression to decoding
HE-OD experimental data. The quantum system is atomic Rb and the measurements
(details of the experiments are given in [25]) are labeled by the indexs = 1,2, ..., N.
The phases of selected spectral components of the laser field were encoded by adding
the functions x1(s) and x2(s). The resulting observed laboratory output signal y(s)
can be expressed as

2

m
V() = [ao + D ajel TR (s =12, N) (33)
j=1
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Fig. 3 Truth plots for least-squares, ridge and D-MORPH regression of Eq.30 for the Hp/air combustion
ignition model data with noise. Both the training and testing data sets contain 100 points

where a; = r; €'%i are complex numbers and n j1, 1 j2 are integers representing dif-
ferent transition processes [23]. The actual rubidium experimental system is well
described by [25]

¥(s) = llag + are™®) + aze' |2
= ap + a1 cos(x1(s)) + B1 sin(x1(s)) + a2 cos(x2(s)) + B sin(x2(s))
+az cos(xy(s) — x2(s)) + B3 sin(x1(s) — x2(s)) (34)

with nip = npy = 1,7’112 = np| = 0 in Eq.33. Oto,otj,ﬂj(j = 1,2, 3) are real
parameters obtained from r;, ¢;(j =0, 1, 2, 3).
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In practice, an a priori physically based model may not be known, thus we expand
Eq. 34 into a larger model with the integers |n 1| + |nj2| = 1,2, 3:

y(s) = llao —i—aleixl(s) +a2ein(s) +a3ei(x1(S)sz(s)) +a4ei(X1(s)+Xz(S))
+a5ei2x‘(s) + a6ei2x2(s) + a7ei(ZX1(S)+X2(S)) + agei(xl(s)—zxz(s))

+a96i3x1(_¥) +a106i3x2(§)”2. (35)

Equation 35 contains the physically motivated “true” mechanism captured by the val-
ues of the coefficients in Eq.34. The goal is to determine the relative magnitudes
of the modulus of a;(j = 0,1,...,10). The terms a; of larger magnitude reveal
the important quantum pathways (i.e., the mechanism); see references [23-25] for a
detailed physical interpretation of such mechanisms. Taking the square modulus in
Eq.35 results in the following expression:

45
) =D wje (x(5))
j=1
= g + aj cos(x1(s)) + Bisin(x1(s)) + @z cos(x2(s)) + B2 sin(xa(s))
+a3z cos(xy(s) — x2(s)) + B3 sin(x1(s) — x2(s))
+ag cos(x(s) + x2(s)) + B4 sin(xy(s) + x2(s))
+a5 cos(2x1(s)) + Bs sin(2x1(s)) + ag cos(2x2(s)) + Be sin(2x2(s))
+a7 cos(2x1(s) + x2(s)) + B7sin(2x1(s) + x2(s))
+ag cos(xy(s) — 2x2(s)) + Bg sin(xi (s) — 2x2(s))
+ag cos(3x1(s)) + Bo sin(3x1(s)) + a0 cos(3x2(s)) + Pio sin(3x2(s))
+ay cos(xa(s) — 2x1(s)) + Br1 sin(xa(s) — 2x1(s))
+a1 cos(2x2(s) + x1(s)) + Bz sin(2xa(s) + x1(s))
+ag3 cos(xi(s) — 3x2(s)) + Bi3 sin(xy(s) — 3x2(s))
+a4cos(x1(s) + 3x2(s5)) + Brasin(xy (s) + 3x2(s))
+ays cos(xa(s) — 3x1(s)) + Bis sin(xa(s) — 3x1(s))
+a16cos(2x1(s) — 2x2(s)) + Bie sin(2x1(s) — 2x2(s))
+oa17 cos(2x1(s) + 2x2(s)) + B17 sin(2x1(s) + 2x2(s))
+ag cos(xi(s) — 4xz(s)) + Big sin(xy(s) — 4x2(s))
+a19 cos(2x1(s) — 3x2(s)) + Bio sin(2x1(s) — 3x2(s))
+ap cos(2x2(s) — 3x1(s)) + Bao sin(2x2(s) — 3x1(s))
+az cos(xi(s) — 5x2(s)) + B2y sin(xy(s) — Sx2(s))
+aan cos(3x1(s) — 3x2(s)) + B2 sin(3xy(s) — 3x2(s)). (36)

All together there are 45 unknown parameters o, o, 8;(j = 1,2,...,22) corre-
sponding to the coefficients w; in Eq.2 with basis functions ¢; = 1 and the 44 cosine
and sine functions as the remaining ¢; in Eq.36. The goal of D-MORPH regression
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in this context is to find the set of parameters «g, o ;, B; that best fits the experimental
data, and ideally coincides with the parameters in the true system, Eq. 34.

The two inputs, phases x1(s) and x> (s), were uniformly sampled in the labora-
tory over [0, 2] with 20 points corresponding to N = 400 pairs of values for
(x1(s), x2(s)) (s = 1,2,...,400). The signal y(s) for each pair of (x1(s), x2(s))
was measured 10 times, and the mean value of the ten measurements was used as
y(s) in D-MORPH regression. The relative error for each measurement of y(s) com-
pared to the mean value represents the experimental error. The average relative error
obtained from the 400 points for each measurement is about 0.017. The quality of the
identified quantum-control-mechanism by D-MORPH regression may be established
by comparing the resultant parameters o, «;, 8; with those independently obtained
from the experimental data by using the original HE-OD decoding procedure [24,25].
The results below will show that D-MORPH regression is far more efficient than the
original HE-OD decoding procedure reflected in the number of data points needed
to extract quantum control mechanism information. Moreover, if the relative error of
D-MORPH regression for y(s) is close to the experimental error 0.017, the resultant
model from the experimental data by D-MORPH regression should be close to the
true system.

The 45 basis functions in Eq. 36 are used to construct ¢ whose normal treatment by
least-squares regression has 45 equations. For D-MORPH regression, only a portion
of the equations related to @ are kept. Since the goal is to determine the relative

magnitudes of the modulus of a;(j =0, 1, ..., 10), it is sufficient to use the first 21
terms in Eq. 36 to construct ®¢ because the parameters o, , 8;(j = 1,2, ..., 10)
in these terms already contain all a;(j = 0,1,...,10) in Eq.35. The coefficient

matrix of Eq.24 in the D-MORPH regression is then rectangular of dimension 21 x
45.

A proper choice of the cost function K is important for D-MORPH regression.
In this example, two steps were employed to find a suitable cost function. With-
out using any a priori knowledge about the system, the cost functions is first set to
be

1 45
K= Ezciiw?
i=

22
1 2 2 2
= 3 | coad + z 1cj (ocj—i-ﬂj) (37)
j:

with

c0=0, cj=Injil+Inpl (j=1-22),
i.e., the weight c; is proportional to the sum of absolute values of the coefficients 7 j;
and n > for x1 and x; in each basis ¢; (x) (sine and cosine functions), which implies that

the basis functions with small values of |7 ;1| and |7 j>| have a priority in the regression.
This setting is proper because larger |n ;| and |n j2| cause larger oscillations for the
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sine and cosine functions and are anticipated to be less relevant on physical grounds
with y then being smoother. The sine and cosine functions with the same |7 1|+ |n 2]
values are given the same weight. The constant term ¢ will not shrink in D-MORPH
regression as c¢g = 0.

Sixty points randomly chosen from the 400 data were used for training and the
other 340 points were used for testing. The resultant coefficients «; and 8; in Eq.36
determined by D-MORPH regression are given in the first part of Table 2 labeled as
“Cost function Eq.37”. The magnitudes of «; (similarly, 8;) are measures of their
significance in the model. Thus, to readily observe the significant terms in Eq. 36, all
the o;’s are divided by the largest one, a3, which is given in the column labeled as
aj/a3. The results show that ¢ (j = 1, 2, 3) are most significant («g is the sum of all
square moduli rjz. of aj, and is always significant). Other o ; are small and may result
from experimental noise. Using this information on the significant terms in Eq. 36, the
weight ¢;’s in Eq. 37 are reset to be

;=0 (j=0.1.23), c¢i=lnjl+lnpl (j=4-22.  (38)

Setting ¢; = 0(j = 0,1, 2, 3) avoids pressure on the parameters ag, ;, 8;(j =
1,2, 3) in the D-MORPH exploration. The resultant coefficients «; and 8; are given
in the second part of Table 2 labeled as “Cost function Eq.38”.

The comparison of oy, &, B;(j = 1, 2, 3) obtained from r; and ¢; determined by
the original HE-OD procedure [24,25] and D-MORPH regression with the cost func-
tion in Eq. 38 is given in Table 3. The accuracy of the model obtained by D-MORPH
regression with the cost function given in Eq.38 for the training and testing data is
given in Fig. 4 and Table 4. For comparison, the results obtained by least-squares
regression for Eq.36 are also given.

Table 3 shows that D-MORPH regression correctly identified the quantum-con-
trol-mechanism by accurately finding the value of the parameters g, «j, B;(j =
1,2,3) (see Eq.34). The other nonzero «;, B;(j > 3) coefficients in Table 2
may arise from experimental noise. In this example the original HE-OD proce-
dure results reported in Table 3 utilized 400 data points, while D-MORPH regres-
sion produced comparable results with 60 data points. The advantage offered
by D-MORPH regression is very important, as taking the data is an expen-
sive laboratory operation. This capability will be useful in high-duty-cycle exper-
iments. Another feature of D-MORPH regression is the use of iterative learn-
ing/testing methodology which permits assessing the credibility of the extracted
information. This prospect may also allow the real-time performance of quantum
control experiments to ‘react’ automatically and increase or decrease the num-
ber of required data points according to circumstances. The fitting accuracy of
D-MORPH regression is also very satisfactory for both the training and test-
ing data. In Fig. 4 and Table 4 the fitting error of least-squares regression is
even smaller than the experimental error, which implies the presence of over-
fitting that yields poor prediction accuracy. The fitting and prediction error of
D-MORPH regression is very similar to the experimental error. These results sug-
gest that the model obtained by D-MORPH regression is close to capturing the true
system structure.
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Table 2 The coefficients «j and B; of Eq.36 obtained by D-MORPH regression with the cost function
defined by Eqs.37 and 38

Jj Cost function Eq.37 Cost function Eq.38
aj Bj aj/a3 o Bj oj/a3

0 137.1068 - - 135.4722 - -

1 11.6228 9.3743 0.5704 16.3589 11.3782 0.6794
2 16.4405 2.2488 0.8069 18.3712 —0.7507 0.7630
3 20.3756 —3.6916 1.0000 24.0775 —6.6595 1.0000
4 3.7826 —0.9390 0.1856 3.4776 1.8688 0.1444
5 1.1755 1.3808 0.0577 —0.7344 —0.1154 —0.0305
6 —1.2945 2.2191 —0.0635 0.1729 2.1594 0.0072
7 0.7113 0.3344 0.0349 0.8015 —0.5435 0.0333
8 1.1860 —0.1619 0.0582 0.6048 —0.0181 0.0251
9 —1.4324 —1.4181 —0.0703 —0.4788 0.0714 —0.0199
10 —0.3565 —1.8157 —0.0175 —0.7085 —0.7274 —0.0294
11 2.4927 3.1882 0.1223 0.4764 0.5283 0.0198
12 1.3780 —1.8097 0.0676 —0.1687 —0.4521 —0.0070
13 —2.4412 0.5949 —0.1198 —0.3444 —0.3660 —0.0143
14 —1.8357 —1.7843 —0.0901 —0.5999 —0.3334 —0.0249
15 —0.9096 —1.7953 —0.0446 —0.1541 —0.1883 —0.0064
16 —1.8265 —2.5400 —0.0896 0.0587 0.2358 0.0024
17 24214 —0.8380 0.1188 —0.1760 —0.0549 —0.0073
17 —1.0266 0.4116 —0.0504 0.0358 —0.0736 0.0015
19 —1.3562 —0.9846 —0.0666 —0.5182 0.0188 —0.0215
20 —0.9586 —2.0583 —0.0470 0.4765 0.1641 0.0198
21 —0.4613 0.4905 —0.0226 —0.1918 0.0417 —0.0080
22 —0.6656 0.7299 —0.0327 —0.1907 0.4528 —0.0079

Table 3 Comparison of g, «j, B (j = 1,2, 3) obtained by the normal HE-OD treatment of the experi-
mental data to that obtained by D-MORPH regression with cost function Eq. 38

j HE-OD* D-MORPH
oj Bj o] Bj

0 136.8830 - 135.4722 -

1 16.6667 11.0113 16.3589 11.3782

2 18.3780 —0.2510 18.3712 —0.7507

3 23.5137 ~7.1320 24.0775 —6.6595

*Procedure in [24,25]

@ Springer



J Math Chem (2012) 50:1747-1764 1763

200

N
N
o

190 |
- . ) 200
5 180 Training data: 60 points s Testing data: 340 points
2 170 | % 180 y
o > 460 | @ >
L5 L5
o S 50| 5 © 160
o < o <
= 2 o} 2
I 5 T 5 140
Q 5 130t [
C & C o
o 120 t o 120
E "o E 100
100 |
90 L 80
90 100 110 120 130 140 150 160 170 180 190 200 80 100 120 140 160 180 200 220
Experimental value of y Experimental value of y
200 220
c 190 < %
k) - . ] =} 200 e e
2 180 Training data: 60 points @
g > | S >80 .
© © 160 | o © e
= o 5 160 )
o O 150 | @ 9
0 = =S
T = 140 | g 2
3 3 S g 140 °
g 130 | 3 o o
% 120 w120
@ 3 o0 o
@ 110 | o ® ) )
— 100 — 100 ° Testing data: 340 points
90 80
90 100 110 120 130 140 150 160 170 180 190 200 80 100 120 140 160 180 200 220
Experimental value of y Experimental value of y

Fig. 4 The accuracy of D-MORPH and least-squares regression for Eq. 36 in the illustration of quantum-
control-mechanism analysis

Table 4 The average absolute and relative errors from solving Eq. 36 obtained by D-MORPH and least-
squares regression for training and testing data

Training data Testing data

Abs. err. Rel. err. Abs. err. Rel. err.
D-MORPH 1.3627 0.0102 1.9615 0.0155
Least-squares 0.6405 0.0046 9.9131 0.0810

4 Conclusion

D-MORPH regression is extended to treat the common case where there is more
observation data than unknown parameters. A proper subset of the normal equation
for least-squares regression with an enhanced number of basis functions is used such
that the final number of linear algebraic equations is less than the number of unknown
parameters. D-MORPH regression is utilized to exploit this circumstance. The choice
of the subset of normal equation depends on the goal. A reasonable criterion is that the
fitting accuracy of the model composed of the subset of basis functions be acceptable
by least-squares regression. The combustion model example used this criterion. In
some cases, the choice of the subset may be determined based on physical consider-
ations which was the case for the treatment of HE-OD experimental data. D-MORPH
regression only uses matrix operations including determination of the generalized
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inverse @7, the inverse (U,Lr Vo)~ ! and singular value decomposition of PC.
The computation is simple, fast, and Matlab is easy to implement for these purposes
[22]. The illustrations in the paper show that D-MORPH regression is superior to nor-
mal least-squares regression, least-squares regression combined with the F-test and
ridge regression in terms (1) prediction accuracy, (2) required sample size, and (3)
computational efficiency.
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